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How clouds respond to anthropogenic sulfate aerosols is one of the largest sources of
uncertainty in the radiative forcing of climate over the industrial era. This uncertainty
limits our ability to predict equilibrium climate sensitivity (ECS)—the equilibrium
global warming following a doubling of atmospheric CO2. Here, we use satellite obser-
vations to quantify relationships between sulfate aerosols and low-level clouds while
carefully controlling for meteorology. We then combine the relationships with estimates
of the change in sulfate concentration since about 1850 to constrain the associated radi-
ative forcing. We estimate that the cloud-mediated radiative forcing from anthropo-
genic sulfate aerosols is21:11± 0:43 W m22 over the global ocean (95% confidence).
This constraint implies that ECS is likely between 2.9 and 4.5 K (66% confidence).
Our results indicate that aerosol forcing is less uncertain and ECS is probably larger
than the ranges proposed by recent climate assessments.

climate change j aerosol radiative forcing j aerosol–cloud interactions j climate sensitivity

Emissions from industrial activities change the composition of the atmosphere, thereby
exerting a radiative forcing on Earth’s climate. One important component of the forc-
ing arises from emissions of hygroscopic aerosols and precursor gases that increase the
number of cloud-condensation nuclei (CCN) in the atmosphere. Clouds respond to
this perturbation by immediately forming smaller but more numerous droplets and
then adjusting in ways that can change cloud amount or total water content. The per-
turbation to the radiation balance at the top of the atmosphere that results from the
immediate cloud response and subsequent cloud adjustment is termed the effective
radiative forcing from aerosol–cloud interactions (ERFaci). Global-mean ERFaci is dom-
inated by anthropogenic sulfate aerosols (1, 2), which produce a potentially large but
highly uncertain cooling effect by modifying low-level clouds (3, 4). This uncertainty
limits our ability to constrain equilibrium climate sensitivity (ECS) (5, 6).
One major source of uncertainty of ERFaci stems from the difficulty of quantifying

aerosol–cloud interactions using observations. This task is challenging because meteoro-
logical variations can give rise to correlations between aerosols and clouds that do not
represent a direct causal relationship between the two (7–9). Here, we address this chal-
lenge by implementing a method that removes confounding meteorological factors
from observed sulfate–low-cloud relationships. This facilitates strong observational con-
straints on ERFaci and ECS.

Cloud-Controlling Factor Analysis

We relate sulfate aerosol concentration to low-cloud properties using cloud-controlling
factor analysis (10). This framework has been used extensively to constrain cloud–
climate feedbacks (11, 12), but it has not been used to constrain ERFaci before. The
method assumes that anomalies of a generic low-cloud property C can be expressed as
a linear combination of seven local environmental predictor variables xi :

C 0 ≈ ∑
7

i=1

oC
oxi

x 0i , [1]

where primes denote monthly anomalies from the climatological seasonal cycle and low
clouds are defined as having cloud-top pressure (CTP) greater than 680 hPa. The first
six xi terms include sea-surface temperature (SST), estimated inversion strength (EIS)
at the top of the planetary boundary layer (13), horizontal advection across a surface–
temperature gradient, relative humidity at 700 hPa, vertical velocity at 700 hPa, and
near-surface wind speed. These terms encapsulate all proposed mechanisms of large-
scale meteorological controls on marine low clouds (10). The final xi term is the base-
10 logarithm of sulfate aerosol mass concentration at 910 hPa, log10s. This term has
logarithmic form because the logarithm of sulfate mass concentration is approximately
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proportional to the logarithm of cloud-droplet number concen-
tration (14), and the logarithm of cloud-droplet number con-
centration is approximately proportional to cloud albedo at
regional scales (1, 15). Furthermore, the 910-hPa level is used
rather than the surface because conditions at 910 hPa are a bet-
ter indicator of CCN concentration near the cloud base (16).
Thus, oC=olog10s represents the aerosol–cloud relationships
that are most relevant to ERFaci.
We estimate oC=oxi by applying multilinear regression to

monthly satellite and reanalysis data. Low-cloud properties are
obtained from the Clouds and the Earth’s Radiant Energy System
(CERES) (17) and Moderate Resolution Imaging Spectroradiom-
eter (MODIS) (18) satellite datasets, and the xi terms are calcu-
lated from the Modern-Era Retrospective Analysis for Research
and Applications version 2 reanalysis (MERRA-2) (19, 20). We
select ocean-covered grid boxes, remove the climatological sea-
sonal cycle and linear trend from all variables, and spatially aver-
age the anomalies over a 5° × 5° grid. We then regress C 0 against
the x 0i terms at each grid box. The regression coefficients for
oC=olog10s represent the sensitivity of low clouds to local anoma-
lies of log10s with all of the meteorological predictors held cons-
tant. This method improves upon previous observational estimates
of aerosol–cloud interactions by comprehensively controlling for
meteorology.

Quantifying Aerosol–Cloud Interactions

We first look for evidence of aerosol–cloud interactions in the
relationship between sulfate concentration and cloud-droplet
effective radius, re . The number density of CCN usually controls

the number density of cloud droplets in the marine boundary
layer, so larger sulfate concentration is expected to coincide with
smaller but more numerous droplets (21). Indeed, the CERES
and MODIS observations both show that re becomes significantly
smaller with increasing sulfate concentration over most of the
global ocean (Fig. 1 A and B). Two exceptions occur in small
areas of the Arabian Sea and the northeast Atlantic Ocean, where
the opposite relationship is observed. However, these positive
olog10re=olog10s estimates are not found in other MODIS re
retrievals, suggesting that they may be artifacts from heavy dust
loading in these areas (SI Appendix, SI Text and Fig. S1) (22, 23).
Besides these exceptions, the observations robustly show that larger
sulfate concentration is associated with smaller cloud droplets.

The sulfate-induced change in re can subsequently modify
cloud processes in ways that change low-cloud fraction, Ln, or
liquid-water path (LWP). For instance, cloudy air that is pol-
luted with anthropogenic CCN will form smaller cloud droplets,
which are more susceptible to evaporation when entrainment
occurs. Small droplets that reach the cloud-top entrainment zone
also sediment more slowly, so they are more likely to be exposed
to entrained air. These mechanisms increase cloud evaporation
and reduce LWP (24, 25). Other adjustment mechanisms may
also occur when precipitating clouds are exposed to polluted air.
For instance, CCN pollution can produce smaller cloud droplets
that coalesce into raindrops more slowly. This can deepen
precipitating clouds and increase detrainment into attached
stratiform-cloud elements (26–28). In some cases, pollution may
suppress precipitation entirely. This can change major character-
istics of the cloud field, such as the mesoscale cellular structure
(29, 30). Cloud adjustments may also feed back on the sulfate

A B

C D

E F

Fig. 1. Relationships between low-cloud properties and local anomalies of log10s. Linear regression coefficients are plotted for (A and B) olog10re=olog10s,
(C and D) olog10LWP=olog10s, and (E and F) oLn=olog10s, where re is the liquid-cloud effective radius, LWP is the liquid water path, and Ln is the low-cloud frac-
tion. Cloud observations are from (A, C, and E) CERES and (B, D, and F) MODIS. Stippling indicates regression coefficients that are significantly different from
zero at the 95% confidence level. Blue colors indicate cloud anomalies that cause more SW reflection to space and vice versa for red colors.
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concentration by changing the rates of sulfate removal by precip-
itation or sulfate production by chemical oxidation of SO2 dis-
solved in cloud droplets (31–34). All of these mechanisms could
contribute to the observed aerosol–cloud relationships, and their
relative importance could vary from one location to another.
We look for evidence of cloud-adjustment mechanisms in

the relationships among LWP, Ln, and sulfate concentration.
First, we find that larger sulfate concentration is associated with
smaller LWP in many locations (Fig. 1 C and D). This rela-
tionship is especially strong in the semipermanent stratocumu-
lus regions of the subtropics and in areas directly downwind.
These regions contain a large proportion of stratiform clouds
(35–38), suggesting that stratiform clouds may be especially
sensitive to aerosol-driven changes in evaporation, sedimenta-
tion, and entrainment (24, 25). The olog10LWP=olog10s rela-
tionship is mostly insignificant in other regions of the tropics
and subtropics, and it varies spatially in the midlatitudes.
Furthermore, larger sulfate concentration is associated with
larger Ln in many subtropical and midlatitude locations (Fig. 1
E and F). The larger Ln occurs in concert with a smaller fraction
of precipitating clouds and a smaller ratio of partially cloud-
covered pixels to fully cloud-covered pixels (SI Appendix, SI
Text and Figs. S2 and S3). Thus, compared with the cloud cli-
matology, clouds in high-sulfate environments precipitate less
frequently and have smaller perimeter-to-area ratios, implying a
larger cloud size (39). These characteristics suggest that sulfate
anomalies may be associated with changes in cloud morphology.
Such morphological changes could be a consequence of changes
in stratiform-cloud area near precipitating clouds or changes in
the occurrence of different forms of mesoscale cellular convec-
tion (28, 29). Furthermore, sensitivity tests reveal that these
relationships cannot be explained by retrieval artifacts (SI
Appendix, SI Text). These results show that sulfate anomalies
change the macroscopic properties of low clouds, or vice versa.
The sulfate–low-cloud relationships suggest that increasing

sulfate concentration will coincide with changes in cloud radia-
tive properties, including an albedo enhancement from smaller
but more numerous cloud droplets, an albedo enhancement

from increasing Ln, and an albedo reduction from decreasing
LWP. The overall cloud radiative response is quantified by the
shortwave (SW) low-cloud radiative effect RSW , which repre-
sents the difference between the true SW flux at the top of the
atmosphere and the flux that would occur if low clouds were
removed, leaving all else unchanged. We make three estimates
of RSW using different cloud retrieval algorithms, different
methods for quantifying radiative fluxes, and different filtering
choices for pixels that are prone to retrieval bias (Materials and
Methods). The radiative sensitivities oRSW =olog10s are averaged
over midlatitude, stratocumulus, and cumulus regimes (Fig. 2A).
To interpret the results, we also decompose oRSW =olog10s into a
component associated with changes in cloud amount and a com-
ponent associated with changes in cloud optical depth and CTP
(Materials and Methods). The estimates consistently show that
low clouds reflect more SW radiation to space as sulfate concen-
tration increases, and the magnitude of oRSW =olog10s is largest
in stratocumulus clouds and smallest in cumulus clouds (Fig. 2B).
However, the oRSW =olog10s decomposition by cloud properties
varies considerably across the three RSW datasets (Fig. 2 C
and D). This discrepancy occurs because different filtering
choices for pixels with poor data quality cause offsetting changes
in the components of the oRSW =olog10s decomposition (SI
Appendix, SI Text). We note this limitation because it shows that
different reasonable choices of data filtering can lead to different
interpretations of the underlying causes of cloud radiative sensi-
tivity to sulfate perturbations. Despite this limitation, the esti-
mates of the overall sensitivity oRSW =olog10s are consistent across
all RSW datasets (Fig. 2B). The fact that we arrive at consistent
estimates using different datasets and methods gives us confidence
that the estimates represent real aerosol–cloud relationships.

Opportunistic Experiments

The observed oRSW =olog10s relationships result from coupled
aerosol–cloud interactions, in which the direction of causality is
not always clear. However, in some “opportunistic experiments,”
causality is unambiguous (40). These experiments occur when

A

B C D

Fig. 2. Relationships between RSW and local anomalies of log10s. (A) Locations of stratocumulus (Sc), cumulus (Cu), and midlatitude (Mdl) regimes. (B) Regime-
average regression coefficients representing oRSW=olog10s. For each regime, three estimates from different observational datasets and methods are plotted
(CERES, MODISCLD+PCL, and MODISCLD) (Materials and Methods). (C and D) Similar to B but showing the components of oRSW=olog10s that arise from changes in
(C) cloud amount and (D) cloud optical depth (τ) and CTP. Error bars are 95% CIs.
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known variations in sulfur emissions cause regional anomalies of
log10s. We use these experiments to test if our method can pre-
dict how changing sulfur emissions affect clouds at climate-
relevant scales.
One opportunistic experiment exists downwind of eastern

North America, where efforts to reduce air pollution have
decreased sulfur emissions since 2003 (41–43). We examine a
10° latitude by 20° longitude box in the North Atlantic Ocean
that experienced a trend in log10s of �0:08 ± 0:03 decade�1

and a trend in RSW of 0:78 ± 0:63 W m�2 decade�1 during
2003 to 2019 (Fig. 3A). These decadal trends are removed
prior to the regression analysis, so we test the method based on
its ability to predict the RSW trend. We compute changes in
the predictor variables between the first eight years (2003 to
2010) and the final eight years (2012 to 2019) of the record,
and we input the results to the regression models to predict the
change in RSW (Eq. 1 and Materials and Methods). The regres-
sion method correctly predicts the observed change in regional-
mean RSW , and it predicts that sulfate aerosol and meteorology
contributed comparable amounts to this change (Fig. 3B). The
method also correctly predicts the decadal change of RSW
downwind of eastern Asia, where significant but smaller trends
occurred (SI Appendix, SI Text and Fig. S4).

Another opportunistic experiment exists near K�ilauea Vol-
cano, Hawai‘i, where volcanic eruptions in April to December
2008 and May to August 2018 emitted gaseous SO2 that ulti-
mately oxidized to form sulfate aerosol (Fig. 3C) (44–46). We
consider a 20° latitude by 50° longitude box downwind of
the volcano, and we test our method by removing data from
the eruption periods, performing regression analysis, and using
the regression models to predict the average of R 0

SW during the
eruptions (Materials and Methods). The method again correctly
predicts the regional mean of R 0

SW , and it attributes this anom-
aly almost entirely to the increase in sulfate concentration dur-
ing the eruptions (Fig. 3D). Our method thus skillfully predicts
large-scale cloud radiative anomalies that are caused by chang-
ing sulfur emissions, justifying its use for estimating ERFaci.

Constraining ERFaci

We next use our regression analysis to estimate ERFaci over the
global ocean. Assuming that sulfate aerosols dominate the anthro-
pogenic influence on CCN (1, 2), ERFaci can be estimated by

ERFaci ≈
�

oRnet

olog10s
Δlog10s

�
, [2]

A B

C D

Fig. 3. Method validation using opportunistic experiments with varying sulfur emissions. (A) Time series of log10s anomalies downwind of eastern North
America. Data are averaged over the region outlined in A, Inset. Anomalies in A are calculated by removing the climatological seasonal cycle but retaining the
long-term linear trend. Shading shows the anomaly time series, and the red line shows the trend. (B) Observed and predicted cloud radiative anomalies
associated with the opportunistic experiment, ΔRSW . In this case, ΔRSW represents the decadal trend of RSW and is defined as RSW averaged over 2012 to
2019 minus RSW averaged over 2003 to 2010. Predicted values include the total prediction, the contribution from changes in log10s, and the contribution
from changes in meteorology (labeled “Total,” “s,” and “Met.,” respectively). (C) Time series of log10s anomalies downwind of K�ilauea Volcano, Hawai‘i. Data
are averaged over the region outlined in C, Inset. The red dot in C, Inset shows the location of K�ilauea Volcano, and the vertical lines on the time series show
eruptions in 2008 and 2018. (D) Similar to B except that in this case, ΔRSW is defined as the RSW anomaly averaged over both eruption periods. Uncertainties
and error bars are 95% CIs. RSW data are from CERES.
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where angle brackets denote a spatial average over the ocean
between 55°S and 55°N latitude, Rnet is the net low-cloud radia-
tive effect, and Δlog10s is the change in log10s between the
present-day (2005 to 2014) and preindustrial (1850 to 1859) peri-
ods from the output of 20 state-of-the-art global climate models
from the Coupled Model Intercomparison Project Phase 6
(CMIP6). Because this estimate relies on model output to deter-
mine Δlog10s, it may be susceptible to model bias from imperfect
sulfur emissions or imperfect representations of sulfate processing
by clouds. However, anthropogenic sulfur emissions depend pri-
marily on the sulfur content of fuel rather than the conditions of
combustion, so they are less uncertain than other forms of air pol-
lution (47). Furthermore, many global climate models simulate
recent decadal trends of regional sulfate concentration that are
consistent with surface observations (48). The CMIP6 models
also simulate expected characteristics of the spatial pattern of
Δlog10s, including a hemispheric asymmetry and especially large
values near major industrial areas in Asia and North America (Fig.
4A). For these reasons, it seems unlikely that all models in the
ensemble share common biases that adversely affect the mean esti-
mate of Δlog10s. Thus, we proceed using these estimates.
We interpret ERFaci by examining the total value and its

decomposition into components associated with changes in dif-
ferent cloud properties. The total ERFaci inferred from CERES
observations is �1:11 ± 0:43 W m�2 (95% CI). This case is
considered to be the best estimate of total ERFaci because it is
inferred from satellite retrievals of radiative fluxes, although it
closely matches the two MODIS-based estimates (Fig. 4B and
Materials and Methods). The decomposition into a component
associated with changes in cloud amount and a component
associated with changes in cloud optical depth and CTP varies
considerably across our three estimates, but all estimates show
that neither component can be neglected (Fig. 4 C and D).

The cloud-amount component can be conservatively bounded
above by the most positive value from the CIs of the three esti-
mates in Fig. 4C. This approach indicates that there is a 97.5%
probability that the contribution of cloud-amount changes to
ERFaci is more negative than �0:18 W m�2. Similarly, the
cloud optical-depth and CTP component is bounded above by
�0:12 W m�2. The upper bound of the optical-depth and
CTP component is considerably smaller in magnitude than
estimates of cloud brightening from aerosol-driven changes in
cloud-droplet size and number concentration (the “Twomey
effect”) (49–51). Thus, our results do not preclude the possibil-
ity that this cloud-brightening effect could be largely offset by
cloud-adjustment mechanisms that reduce LWP (Fig. 1). These
findings corroborate other observational evidence suggesting
that aerosol-driven changes in cloud fraction and perhaps LWP
contribute substantially to ERFaci (7, 52–55).

Our near-global estimate of ERFaci covers a domain that
includes about 60% of the global surface area and nearly all
remote ocean regions, which are especially sensitive to anthro-
pogenic CCN (56). The estimate does not include polar
oceans, but these regions make a small contribution to global
ERFaci because they cover a relatively small area and experience
weak insolation. For these reasons, the near-global estimate
should approximately represent the true global average. Indeed,
CMIP6 models confirm this expectation (SI Appendix, Fig. S5).
Thus, we relate global-average ERFaci to domain-average ERFaci
with a scalar γ that represents the ratio of the two quantities.
We calculate γ using ERFaci estimates from 20 CMIP6 climate
models, and we scale the domain-average ERFaci by γ to esti-
mate the global-average ERFaci (Materials and Methods).

Adopting terminology from the Intergovernmental Panel on
Climate Change (IPCC), our global estimate of ERFaci inferred
from CERES observations has a very likely range (90% CI) of

A

B C D

Fig. 4. ERFaci over the global ocean. (A) Climate model estimate of the change in log10s between present-day and preindustrial conditions. The mean from
20 CMIP6 models is plotted. (B) Total ERFaci averaged over the ocean between 55°S and 55°N. Three estimates of ERFaci are obtained using different observa-
tional datasets and methods (CERES, MODISCLD+PCL, and MODISCLD). (C and D) Similar to B but showing the components of ERFaci that arise from changes in
(C) cloud amount and (D) cloud optical depth (τ) and CTP. Error bars are 95% CIs.
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�1:16 ± 0:48 W m�2 (Fig. 5A). This range is ∼30% narrower
than the observationally based range proposed by the IPCC Sixth
Assessment Report (4) and ∼60% narrower than the range pro-
posed by the World Climate Research Program (WCRP) (3).
Our estimate lies within the IPCC- and WCRP-assessed ranges,
but its probability density is concentrated at relatively large nega-
tive values. For instance, we estimate that ERFaci is probably more
negative than �0:68 W m�2 (95% probability), while the IPCC
and WCRP very likely ranges extend up to �0:23 and �0:07 W
m�2, respectively. In other words, our results show that ERFaci is
less uncertain and potentially larger in magnitude than the ranges
proposed by recent climate assessments. Compared with the obser-
vational studies that inform these assessments, we control for
more confounding meteorological factors and validate our method
more thoroughly with opportunistic experiments. Thus, we estab-
lish a narrower and more robust constraint on ERFaci.

Implications for Climate Sensitivity

Our constraint on ERFaci indicates that forcing from anthropo-
genic sulfate aerosols masked a substantial fraction of forcing
from greenhouse gases between the present-day and preindustrial
periods. This implies that global-mean surface temperature must
be relatively sensitive to greenhouse gas forcing to have warmed
as much as it did during the twentieth century. We quantify the
long-term implications of this result using the metric of ECS,
which is defined as the equilibrium change in global-mean sur-
face air temperature following a sustained doubling of atmo-
spheric CO2 over its preindustrial value. ECS is calculated using
a framework developed by the WCRP that incorporates multiple
lines of evidence (5). We refine the evidence from the historical
climate record by substituting our estimate of ERFaci in place of
the original distribution (Materials and Methods). This line of
evidence constrains the lower bound of ECS (5), so our ERFaci
estimate substantially changes the ECS prediction (Fig. 5B). We

estimate that the likely range of ECS is 2.9 to 4.5 K (66% CI),
which is shifted toward larger values relative to the ranges pro-
posed by the WCRP (2.6 to 3.9 K) (5) and the IPCC Sixth
Assessment Report (2.5 to 4.0 K) (4). Our central estimate of
ECS is also about 0.5 K larger than that of the two assessments.
Furthermore, we find that ECS is almost certainly above 2 K
(99.9% probability), and it is more likely to be above 4.5 K
than predicted by the WCRP (17% probability for our estimate
and 7% probability for the WCRP estimate). This means that
long-term global warming will probably be more severe than
the predictions of the IPCC and the WCRP.

Our ERFaci constraint also has implications for climate
change over the twenty-first century. Because sulfate aerosols
have a much shorter lifetime in the atmosphere than anthropo-
genic greenhouse gases, efforts to reduce sulfur emissions could
rapidly reduce ERFaci and unmask greenhouse gas forcing. This
could cause decadal or centennial warming that would hinder
societal aspirations to limit global surface temperature to 1.5 to
2 K above its preindustrial value (57, 58).

Our results demonstrate that careful analysis of satellite observa-
tions can robustly constrain estimates of aerosol–cloud interactions
and ERFaci. These constraints clarify the underlying causes of histor-
ical climate change and refine our estimates of climate sensitivity.
Importantly, the constraints imply that recent climate assessments
may underestimate the magnitudes of ERFaci and ECS (Fig. 5).
This supports the scientific understanding that mitigation efforts
targeting aerosol and greenhouse gas forcing are urgently
needed to avoid potentially dangerous climate change.

Materials and Methods

Satellite Data, Reanalysis, and CMIP6 Model Output. We analyze monthly
gridded satellite observations from the CERES FluxByCldTyp Edition 4.1 dataset
(17) and the MODIS Collection 6 MYD08_M3 dataset (18) from 55°S to 55°N
during 2003 to 2019. Our primary unit of analysis is a joint histogram of cloud
fraction partitioned by cloud optical depth and CTP and a corresponding matrix
of the top of atmosphere radiative flux for each histogram bin. We also analyze
top of atmosphere clear-sky radiative flux, re, and LWP. re is defined by the ratio
of the third and second moments of the cloud-droplet size distribution, and LWP
is defined by the vertically integrated mass of cloud droplets per unit area. We
compute the base-10 logarithm of re and LWP using daily versions of the CERES
and MODIS datasets, then average the results over one-month intervals. These
two variables are averaged over pixels identified as liquid clouds. We also use
the fractions of low and nonlow clouds, which we define by CTP > 680 hPa and
CTP ≤ 680 hPa, respectively. We do not analyze cloud-droplet number concen-
tration because satellite-based estimates of this quantity require strict filtering
conditions that can cause small sample sizes or sampling bias, particularly in
areas dominated by cumulus clouds (59, 60).

The CERES and MODIS data are retrieved from passive instruments that view
the highest cloud in each scene, so nonlow clouds can artificially change the
retrieved low-cloud fraction if they obscure low clouds from the satellite view.
We address this limitation by defining a metric that is not sensitive to overlying
clouds. Let L and U represent the fraction of low and nonlow clouds retrieved by
the satellite, respectively. The nonobscured low-cloud fraction, Ln, is defined by
Ln ≡ L=ð1� UÞ: This metric represents the low-cloud fraction relative to the
area that is not obscured by overlying clouds.

We also analyze RSW , which represents the difference between the actual top
of atmosphere SW flux and the flux that would occur if low clouds were removed
leaving all else unchanged. We estimate R0SW controlling for cloud obscuration
effects following the procedure recommended in ref. 10:

R0SW = ∑
P

p=1
∑
T

t=1

fpt
L
ðRpt � Rclr ÞL0nð1� UÞ

 !

+ ∑
P

p=1
∑
T

t=1
f 0pt � fpt

L0

L

� �
ðRpt � Rclr Þ

 !
,

A

B

Fig. 5. Estimates of (A) global ERFaci and (B) ECS from the WCRP, the IPCC
Sixth Assessment Report, and our analysis (“Update”). Thin horizontal lines
denote 90% CIs, thick horizontal lines denote 66% CIs, and black vertical
lines denote central estimates. The central estimates represent the median
of the distribution for all cases except the IPCC estimate of ECS. In that
case, the central estimate is the reported “best estimate” from the assess-
ment. The IPCC values of ERFaci represent the assessment based on obser-
vational evidence alone.
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where p runs over the CTP bins for low clouds (P = 2 for CERES and P = 2 for
MODIS), t runs over all optical-depth bins (T = 6 for CERES and T = 8 for
MODIS), fpt is the retrieved cloud fraction in bin ðp, tÞ, Rpt is top of atmosphere
SW flux above clouds in bin ðp, tÞ, Rclr is top of atmosphere SW flux above clear
sky, and overbars denote the climatological seasonal cycle. We refer to
Rpt � Rclr as the cloud radiative kernel. The first term on the right side of this
equation represents the RSW anomaly that arises from a change in Ln with no
change in the proportion of cloud fraction in each joint CTP and optical-depth
bin, and the second term on the right side represents the RSW anomaly that
arises from a change in the distribution of optical depth and CTP with no change
in Ln. The net radiative effect of low clouds Rnet is calculated similarly.

To test the robustness of the analysis, we calculate one R0SW estimate using
CERES cloud fraction and radiative kernels (CERES case) and two R0SW estimates
using MODIS cloud fraction and model-based radiative kernels (MODISCLD+PCL
and MODISCLD cases). MODIS kernels are calculated with the Rapid Radiative
Transfer Model for Global Climate Models (61) following the method in ref. 62.
The MODISCLD+PCL estimate includes partly cloudy pixels in the calculation of
cloud fraction, and the MODISCLD estimate does not. We consider these cases
separately because partly cloudy pixels are prone to retrieval bias (18). By com-
paring the three R0SW estimates, we are able to determine if the results are sensi-
tive to the cloud retrieval algorithms, the method for calculating the radiative
kernel, or the treatment of partly cloudy pixels. The MODIS-based estimates
reproduce monthly variations of the CERES-based estimate with a bias of
about +2 to +4% (SI Appendix, SI Text and Fig. S6).

We also use monthly meteorological fields and sulfate–aerosol mass concen-
tration at 910 hPa from MERRA-2 reanalysis (19, 20). MERRA-2 blends observa-
tions and global model simulations to estimate the state of the atmosphere.
For sulfate aerosol, bias-corrected observations of total aerosol optical depth are
combined with a model that treats the sources, sinks, and chemistry of sulfate
and its precursor gases. The data assimilation accounts for aerosol swelling in
humid environments and filters out pixels near clouds that are affected by
retrieval bias (19). The main limitation of these data is that the total aerosol
optical depth is constrained by observations, but aerosol species distributions
and vertical profiles are not. Despite this limitation, the estimates of sulfate con-
centration are strongly correlated with independent satellite retrievals of cloud-
droplet number concentration (42).

Finally, we use the output from historical simulations of 20 CMIP6 global cli-
mate models. The simulations are run from 1850 through 2014 with realistic
emissions of greenhouse gases, aerosols, and aerosol precursor gases. Sulfate
mass concentration from the model output is converted to pressure coordinates
and then linearly interpolated to the 910-hPa level. The models used in the anal-
ysis are listed in SI Appendix, Table S1.

Cloud-Controlling Factor Analysis. We extend the cloud-controlling factor
analysis of ref. 10 to quantify relationships between sulfate aerosols and low
clouds. Let C represent a low-cloud property, such as RSW , Rnet , log10re,
log10LWP, or Ln. The cloud-controlling factor framework posits that C0 can be
approximated by a linear combination of seven environmental predictor varia-
bles xi, including SST, EIS, horizontal advection across a surface–temperature gra-
dient, relative humidity at 700 hPa, vertical velocity at 700 hPa, near-surface
wind speed, and log10s (Eq. 1). EIS represents the inversion strength at the top
of the planetary boundary layer. It is defined as

EIS ≡ ðh700 � hsÞ � Γ850m ðZ700 � ZLCLÞ,
where h700 is potential temperature at 700 hPa, hs is the potential temperature
at the surface, Γ850m is the moist adiabatic lapse rate of potential temperature at
850 hPa, Z700 is the height of the 700-hPa pressure level, and ZLCL is the height
of the lifting condensation level for an air parcel at the surface (13). Horizontal
advection across a surface–temperature gradient, Tadv, is defined as

Tadv ≡ �u � ∇SST;
where u is the horizontal wind vector at 10 m above the surface. All xi terms are
calculated from MERRA-2 data and linearly interpolated to the native 1° × 1°
grid of CERES and MODIS. We then select ocean-covered grid boxes, remove the
climatological seasonal cycle and linear trend from all variables, and average the
anomalies over a 5° × 5° grid. Finally, we regress C0 against the x0i terms

separately for each grid box. On average, the regression method explains 42%
of the variance of R0SW over the global ocean.

The results of the regression analysis are consolidated by averaging over
three cloud regimes. We first identify locations that regularly experience midlati-
tude weather systems based on the variance of 3-h sea-level pressure. Grid boxes
in which the variance exceeds 40 hPa2 are assigned to a midlatitude regime.
The remaining grid boxes are partitioned into stratocumulus and cumulus
regimes based on whichever cloud type is observed more frequently in the satel-
lite retrievals of ref. 36. Regression coefficients are spatially averaged over each
regime, weighting by ocean area.

Opportunistic Experiments. The first opportunistic experiment tests whether
our method can predict the trend of RSW downwind of eastern North America
between 30°N to 40°N latitude and 75°W to 55°W longitude during 2003 to
2019 (Fig. 3A). Because trends are removed prior to the regression analysis, test-
ing our method based on its ability to predict the RSW trend serves as validation.
We begin with gridded RSW and xi data, in which the climatological seasonal
cycle has been removed, but the long-term trend has not. Decadal changes of
the variables are estimated at each grid box by subtracting the average during
2003 to 2010 from the average during 2012 to 2019. The xi changes are then
input to the regression models to predict the decadal change of RSW . Finally, the
results are spatially averaged over the domain. We find similar results when the
domain is expanded by 5° to 10° in latitude and longitude. A similar analysis is
performed downwind of eastern Asia in SI Appendix, SI Text and Fig. S4.

The second opportunistic experiment tests whether our method can predict
R0SW downwind of K�ilauea Volcano, Hawai‘i, during volcanic eruptions in April to
December 2008 and May to August 2018. We consider the region bounded by
5°N to 25°N latitude and 155°W to 155°E longitude, which we define based
on visual inspection of the aerosol plumes in MODIS imagery (46). We begin
with gridded R0SW and x0i data, in which the climatological seasonal cycle and
long-term trend have both been removed. Regression analysis is first performed
using data from outside the eruption periods. We then temporally average x0i
across both eruption periods, and we input the resulting values to the regression
models to predict the average of R0SW during the eruptions. Finally, results are
spatially averaged over the domain.

Estimating ERFaci. ERFaci is estimated by the product of oRnet=olog10s and
Δlog10s (Eq. 2). Ten-year preindustrial and present-day reference periods are
used to remove interannual variability from the estimate of Δlog10s, and the
multimodel mean of Δlog10s is used to compute the central estimate of ERFaci.
The estimates are then spatially averaged to determine the implications for
global climate. Let ERFaci,d be the average over the study domain, which includes
ocean grid boxes between 55°S and 55°N latitude, and let ERFaci,g be the aver-
age over the globe. We relate these quantities by

ERFaci,g = γERFaci,d,

where γ is a scalar that is estimated from the output of 20 CMIP6 climate mod-
els reported in ref. 63 (SI Appendix, Table S1). To dampen random errors in
individual model realizations (64), we compute the central estimate of γ as the
multimodel mean of ERFaci,g divided by the multimodel mean of ERFaci,d. The
central estimate of γ computed from this procedure is 1.04. As a sensitivity test,
we also estimate γ without using climate model estimates of ERFaci. For this test,
we assume that the albedo change associated with ERFaci is approximately the
same over the study domain and over the entire globe, which implies that γ is
approximately equal to global-mean insolation divided by domain-mean insola-
tion. The central estimate of γ in this case is 0.92. Both cases result in similar
estimates of ECS (SI Appendix, Fig. S7).

We compare our estimate of ERFaci,g with an estimate from a WCRP assess-
ment of aerosol forcing (3) and the observation-based estimate of the IPCC Sixth
Assessment Report (4). All estimates represent ERFaci,g associated with liquid
clouds. Our estimate uses a present-day reference period of 2005 to 2014 and a
preindustrial reference period of 1850 to 1859. The WCRP uses a present-day
reference period of 2005 to 2015 and a preindustrial reference year of 1850,
but previous assessments suggest that this slight difference in reference period
will change ERFaci by 0.01 W m�2 or less (65). The IPCC uses a present-day refer-
ence year of 2014 and a preindustrial reference year of 1750, so we adjust this
estimate to make the preindustrial reference period commensurate with the
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other two. We do this by subtracting the best estimate of ERFaci,g between 1850
and 1750 (�0:07 W m�2) (66) from the estimate of ERFaci,g between 2014 and
1750 based on observational evidence alone (90% CI: �1:0 ± 0:7 W m�2).
The IPCC also estimates ERFaci,g based on modeling evidence alone and model-
ing and observational evidence combined, but we do not compare with these
estimates because they include contributions from changes in ice and mixed-
phase clouds.

Uncertainty. Uncertainty in ERFaci,d arises from uncertainty in the regression
coefficients representing oRnet=olog10s and uncertainty in the model estimates
of Δlog10s. We first quantify the component that is attributable to regression
coefficient uncertainty. For a particular spatial grid box i, let εi represent the
half-width of the 95% CI of the grid box mean ERFaci. We estimate εi as

εi = tiσi

ffiffiffiffiffiffiffiffiffiffi
Nnom,i
Neff,i

s
½Δlog10s�i,

where σi is the SE of the regression coefficient, Nnom,i is the nominal number of
temporal degrees of freedom, Neff,i is the effective number of temporal degrees
of freedom, square brackets indicate the central estimate of a parameter, and ti
is the critical value of a Student’s t distribution at the ð1� α=2Þ100% signifi-
cance level using Neff,i � 8 degrees of freedom and α = 0:05. The ratio
Nnom,i=Neff,i is estimated as ð1 + rÞ=ð1� rÞ, where r is the temporal lag-1
autocorrelation of R0net,i. The εi terms are then combined to account for spatial
averaging over the domain. Uncertainty of the domain-average forcing, δobs, is

δobs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N�nom

i=1 w
2
i ε

2
i

q
∑N�nom

i=1 wi

ffiffiffiffiffiffiffiffiffi
N�nom
N�eff

s
,

where N�nom is the nominal number of spatial degrees of freedom, N�eff is the
effective number of spatial degrees of freedom, and wi is the ocean area in grid
box i. The ratio N�nom=N

�
eff is estimated by applying empirical orthogonal function

analysis to R0net following equation 5 of ref. 67. R
0
net,i is multiplied by

ffiffiffiffi
wi

p
prior

to the analysis to remove dependencies on the grid geometry (68). The resulting
value of δobs represents the half-width of the 95% CI of ERFaci,d that is attribut-
able to regression-coefficient uncertainty.

The second source of uncertainty arises from intermodel spread in the esti-
mates of Δlog10s. Because we have estimates from 20 climate models, we con-
struct a 95% CI for ERFaci,d that excludes 1 model and encompasses the range of
the other 19. We first calculate 20 estimates of ERFaci,d by multiplying Δlog10s
from each of the models by ½oRnet=olog10s�. The half-width of the CI, δlog10s, is
estimated as the minimum of ja1 � a19j=2 and ja2 � a20j=2, where a1, a2,
a19, and a20 are the smallest, second smallest, second largest, and largest values
of the 20 ERFaci,d estimates, respectively. The overall 95% CI is defined by

ERFaci,d ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2obs + δ2log10s

q
.

The CI for ERFaci,g includes an additional uncertainty component from the sca-
lar γ that relates ERFaci,d to ERFaci,g. γ and Δlog10s are both calculated from
CMIP6 output, but γ is uncorrelated with global-mean Δlog10s across models.

For this reason, we treat the uncertainties of γ and Δlog10s as independent. Let
δγ represent the half-width of the 95% CI of ERFaci,g that arises from intermodel
spread in the estimates of γ. We construct δγ similarly to δlog10s such that the CI
excludes 1 model and encompasses the range of the other 19. The overall 95%

CI is then defined by ERFaci,g ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½γ�δobsÞ2 + ð½γ�δlog10sÞ2 + δ2γ

q
.

Estimating ECS. We estimate ECS from multiple lines of evidence using a
Bayesian framework developed by the WCRP (5). ECS is approximated by effec-
tive climate sensitivity, which is calculated by extrapolating the climate response
in the first 150 y following an abrupt quadrupling of atmospheric CO2 over its
preindustrial value (69). The “baseline” ECS estimate of the WCRP is computed
with the WCRP-assessed range of ERFaci,g plotted in Fig. 5A (3). This aerosol-
forcing estimate uses reference periods that align with our analysis, so we esti-
mate ECS by repeating the WCRP baseline calculation using our ERFaci,g estimate
in place of the original assessed range. The ECS estimates also account for effec-
tive radiative forcing from direct aerosol–radiation interactions. We use the origi-
nal assessed range of this quantity for our ECS estimate.

Data, Materials, and Software Availability. All satellite, reanalysis, and cli-
mate model data are publicly available. CERES data were downloaded from the
NASA CERES ordering tool (https://ceres.larc.nasa.gov/data/) (70). MODIS and
MERRA-2 data were downloaded from NASA Earthdata (https://www.earthdata.
nasa.gov/) (71). CMIP6 output was downloaded from the Earth System Grid Federa-
tion data portal (https://esgf-node.llnl.gov/projects/cmip6/) (72). The Rapid Radiative
Transfer Model for Global Climate Models is available from the Atmospheric & Envi-
ronmental Research Radiative Transfer Working Group (rtweb.aer.com/rrtm_frame.
html) (73). Code for the climate sensitivity analysis of ref. 5 is available from Zen-
odo [https://zenodo.org/record/3945276#.Yn2tZhPMKlM (74)]. Intermediate data
products produced in our analysis, including gridded monthly anomalies and
regression coefficients, are available from GitHub [https://github.com/nicklutsko/
Radiative_Forcing_Aerosol_Clouds (75)]. All other data are included in the manu-
script and SI Appendix.
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